The downscaling of commercial one-transistor–one capacitor ferroelectric memory cells is limited by the available signal window for the use of a charge integration readout technique. However, the erasable conducting charged walls that occur in insulating ferroelectrics can be used to read the bipolar domain states. Both out-of-plane and in-plane cell configurations are compared for the next sub-10-nm integration of ferroelectric domain wall memories with high reliability. It is highlighted that a nonvolatile read strategy of domain information within mesa-like cells under the application of a strong in-plane read field can enable a massive crossbar connection to reduce mobile charge accumulation at the walls and crosstalk currents from neighboring cells. The memory has extended application in analog data processing and neural networks.